COMBINATORIAL RESULTS IN FLUCTUATION THEORY*

BY

JAGDISH SARAN AND KANWAR SEN
Department of Mathematical Statistics,
Delhi University, Delhi-110 007
(Received: October, 1975)

1. Introduction

Takacs [5,6] considered the sequence $v_1, v_2, ..., v_n$ of interchangeable random variables assuming non-negative integral values and derived the distributions of the statistics

$$\triangle_n$$
, \triangle_n^* , $\triangle_n^{(c)}$ and $\triangle_n^{(-c)}$

concerning the partial sums $N_r = v_1 + ... + v_r$, r = 1, 2, ..., n.

In the present paper we shall derive, for c>0, the distributions of the following statistics viz.

 $\Lambda_n^{(c)}$: number of subscripts r=1, 2, ..., n for which $N_r=r+c$ holds,

 $\rho_n^{(c)}$: number of subscripts r=1, 2, ..., n for which $N_{r-1}=N_r=r+c$ holds,

 $\nabla_n^{(c)}$: number of subscripts r=1, 2, ..., n for which $N_{r-1} \leqslant r+c-1$, $N_r=r+c$ holds,

 $\nabla_n^{*(c)}$: number of subscripts r=1, 2, ..., n for which $N_{r-1}=r+c$,

 $N_r > r + c$ holds,

under the condition that $N_n = v_1 + ... + v_n = k$ is fixed, where $v_1, v_2, ..., v_n$ is a sequence of mutually independent and identically distributed random variables having 'Geometric-Distribution', *i.e.*,

$$P \{v_r = i\} = pq^i, i = 0, 1, 2, ...$$
 ...(1.1)

where

$$p+q=1, 0< p<1.$$

^{*} This research was sponsored by the C.S.I.R., New Delhi under Grant 7/45 (739)/73-GAU. I.

Further, we define

$$\Lambda_n^{(-c)}$$
, $\rho_n^{(-c)}$, $\nabla_n^{(-c)}$, and $\nabla_n^{*(-c)}$

analogous to

$$\Lambda_n^{(c)}$$
, $\rho_n^{(c)}$, $\nabla_n^{(c)}$ and $\nabla_n^{*(c)}$

on replacing c by -c in the definition. In the sequel we shall employ the technique of path methods as suggested by Csaki and Vincze [1] and Kanwar Sen [3, 4]. Applications of the results have been mentioned in section 5.

2. A LATTICE PATH REPRESENTATION

Set
$$N_r = v_1 + ... + v_r$$
 for $r = 1, ..., n$ and $N_o = 0$.

Then

$$P\{N_n=j\}=\binom{n+j-1}{n-1}p^nq^j \text{ for } j=0, 1, ...$$
 ...(2.1)

Let us represent the sequence $v_1, v_2, ..., v_n$ of non-negative integers by a minimal lattice path in the following manner: (i) the path starts from the origin; (ii) for every j, v_j represents one horizontal unit followed by v_j vertical units and the section of the path contributed by v_j starts where the section of the path contributed by v_{j-1} ended (see Fig. 1a). We call such a path, from (0,0) to (n, N_n) , a minimal lattice path with vartices $(r, N_r), r=1, ..., n$.

Fig. 1a

Fig. 1b.

We observe from (1.1) and (2.1) that the sequence $v_1, ..., v_n$ of geometric random variables possesses the property that all possible lattice paths $(N_1, ..., N_n)$ from (0, 0) to (n, N_n) are equally likely each

with probability
$$P(N_n=k) / {n+k-1 \choose n-1} = p^n q^k$$
.

On rotating the lattice path (Fig. 1a), from (0, 0) to (n, N_n) , obtained by the above construction, through 225° about the origin (so that the starting point becomes the end point and vice versa) and referring the line $N_r=r$ as x-axis, we observe that it is equivalent to a simple random walk path, as defined below in section 3, from $(0, n-N_n)$ to $(n+N_n-1, 1)$ (see Figs 1a and 1b). This procedure of rotation will henceforth be referred to as the "rotation procedure".

3. NOTATIONS

Let θ_1 , θ_2 , ..., θ_n be independent random variables with $P(\theta_i = +1) = q$, $P(\theta_i = -1) = p = 1 - q$, i.e. the sequence θ_i generates a simple random walk. This can be represented in an (i, S) coordinate system by a path with points (i, S_i) , i=0, 1, ..., n where $S_o = 0$, $S_i = \theta_i + ... + \theta_i$ where the consecutive points are connected by straight lines.

For ease in writing we introduce the following symbols:

 $R^{(t)}$ point : a point (i, S_i) where a path reaches the line y=t i.e. for which $S_i=t$.

 $R_{+}^{(t)}\left(\begin{array}{c}R_{-}^{(t)}\end{array}\right)$: an $R_{-}^{(t)}$ point (i, S_i) such that $S_{i-1}=t+1$ $(S_{i-1}=t-1)$.

 $W^{(t)} = t$ -wave : the segment of a path included between two consecutive $R^{(t)}$ points is called a t-wave.

 $W_{+}^{(t)}\left(W_{-}^{(t)}\right)$: a t-wave with $S_{i}>t$ $(S_{i}< t)$ at the intervening positions.

 $T^{(t)}$ point : a point (i, S_i) of the path for which $(S_i=t, S_{i-1}, S_{i+1}=t^2-1)$ holds. This will be called the intersection point in the line y=t $(-\infty < t < \infty)$;

 $T^{(o)}=T$.

 $T_{+}^{(t)} \left(\begin{array}{c} T_{-}^{(t)} \end{array} \right)$: a point (i, S_i) of the path for which $S_{i-1} = t+1$,

 $S_i=t$, $S_{i+1}=t-1$ ($S_{i-1}=t-1$; $S_i=t$, $S_{i+1}=t+1$).

 $S^{(t)}=t$ -section : the segment of a path included between two consecutive $r^{(t)}$ points. An $S^{(t)}$ may consist of

one or more $W^{(t)}$ of the same type.

 $S_{+}^{(t)}\left(\begin{array}{c}S_{-}^{(t)}\end{array}\right)$: a t-section with $S_{i}\geqslant t$ $(S_{i}\leqslant t)$ in between.

 $R_j^{(t)} = t$ -reflection : a t-reflection occurs at an index j when $S_j = t$,

 S_{j-1} . $S_{j+1}=(t+1)^2$ or $(t-1)^2$.

 $R_{f+}^{(t)}\left(\begin{array}{c}R_{f-}^{(t)}\end{array}\right)$: a point (j, S_j) of the path for which $S_{j-1}=S_{j+1}$

 $=t+1=S_i+1$ $(S_{i-1}=S_{i+1}=t-1=S_i-1).$

 $K^{E_m,n}$: a path from (o, k) to (m, n); $o^E_{m,n} = E_m, n$

 $K^{E_{m,n,(i)}}$: an $K^{E_{m,n}}$ path having r $R^{(i)}$ points.

 $K_{m,n}^{E,p}$: an $K_{m,n}^{E}$ path having p $T^{(t)}$ points.

 $K_{m,n,(t)}^{E, \cdot, \cdot, q}$: an $K_{m,n}^{E}$ path having $q R_f^{(t)}$ points.

 $K_{m,n,(t)}^{E^{r}, p, q}$: an $K_{m,n}^{E^{r}}$ path having p $T^{(t)}$ and q $R_{f}^{(t)}$ —points.

Similarly

 $K_{m,n,(t)}^{E,+}$, $K_{m,n,(t)}^{E,*}$ and $K_{m,n,(t)}^{E,*}$, q+

denote an K_{m}^{E} , n path having exactly

 $\gamma R_{+}^{(t)}$, $p T_{+}^{(t)}$ and $q R_{f_{+}}^{(t)}$

points respectively

 H_m , n: an E_m , n path reaching the height n for the first time at the mth step.

N[A]: the number of all A paths, e.g.

 $N\left[E_{m, n}\right] = \begin{pmatrix} m \\ \frac{1}{2} \left(m-n\right) \end{pmatrix}$

We shall use in the sequel the α , β , γ , δ and ϵ -operations involving translation or rotation or reflection of segments of paths as discussed in detail by Kanwar Sen [4].

4. Distribution of $\Lambda_n^{(c)}$, $\rho_n^{(c)}$, $\nabla_n^{(c)}$, and $\nabla_n^{*(c)}$ for a positive integer C

Theorem 1

$${2n+c-l-1 \choose n-1} P \left\{ \Lambda_n^{(c)} = j/N_n = n+c-l \right\}$$

$$= \frac{2j+c+l}{2n+c-l} {2n+c-l \choose n+c+j}, l=0, 1, ..., n+c ...(4.1)$$

and

$${\binom{2n+c+l-1}{n-1}} P \left\{ \Lambda_n^{(c)} = j/N_n = n+c+l \right\}$$

$$= \frac{2j+c+l+2}{2n+c+l} {\binom{2n+c+l}{n-j-1}}, l=1, 2, \cdots (4.2)$$

Proof

To prove (4.1), let $OPP_0P_1P_2...P_j$ Q (see Fig. 2a) be a lattice path from 0 (0, 0) to Q (n, n+c-l) with Nr=r+c for exactly j indices, P_i (i=1, ..., j) being the point (r, N_r) where $N_r=r+c$ for the ith time and P=(1, 0). P_0 be the point where the lattice path meets the line $N_r=r+c$ for the first time.

On applying the 'rotation procedure' we observe that (see Fig. 2b)

$$N \left[\Lambda_n^{(c)} = j, \ N_n = n + c - l \right] = N \left[-(c - l) \ E_{2n + c - l - 1, 1, (-c)}^{j+} \right]$$

Now we establish below a 1:1 correspondence between

$$-(c-l)$$
 $E_{2n+c-l-1,1,(-c)}^{j+}$ paths and H_{2n+c-l} , $2j+c+l$

paths. In the path $Q'P'_{j}...P'_{1}P'_{0}P'$ (Fig. 2b) let us apply β -operation [4] to the segment $Q'P'_{j}$, δ operation [4] to $P'_{1}P'_{1}$ and γ -operation [4] to $P'_{1}P'$ after reflecting the portion $P'_{1}P'_{0}$ (if any) in the line y=-c and attach the transformed segments end-to-end in order. Finally

let us now insert at the end (i. e. after $\theta_{2^{n+c-l-1}}$) a (+1). Thus we obtain an H_{2n+c-l} , 2j+c+l path. By reversing the procedure it may be seen that this transformation is 1:1.

(Fig. 2a)

Hence

$$N \left[> \frac{(c)}{n} = j, \quad N_n = n + c - l \right] = N[H_{2n+c-l}, \quad 2j+c+l]$$

leading to (4.1) for l=0, 1, ..., (n+c) by Feller [2p.89].

Similarly by the rotation procedure we have for l=1, 2,...

$$\begin{split} N \bigg[\bigwedge {}_{n}^{(c)} = j, & N_{n} = n + c + l \ \, \bigg] = N \ \, \bigg[- (c + l) E_{2n + c + l - 1, 1, (-c)}^{j+} \, \bigg] \\ = N \left[H_{2n + c + l, 2j + c + l + 2} \, \right] \end{split}$$

leading to (4.2) by [2],

Theorem 2
$$\binom{2n+c-l-1}{n-1} P \left\{ \begin{array}{l} \rho_n^{(c)} = j/N_n = n+c-l \\ \end{array} \right\}$$

$$= \binom{4j+c+l+1}{2n+c-l+1} \binom{2n+c+l+1}{n-2j-l}, l=1, 2, ...n+c ...(4.3)$$
and
$$\binom{2n+c+l-1}{n-1} P \left\{ \begin{array}{l} \rho_n^{(c)} = j/N_n = n+c+l \\ \end{array} \right\}$$

$$= \binom{4j+c+l+3}{2n+c+l+1} \binom{2n+c+l+1}{n-2j-1}, l=0, 1, 2, ...(4.4)$$

Proof
To prove (4.3) let $OPP_0P_1...P_j$ Q see Fig. 3a) be the lattice path from O(0, 0) to Q(n, n+c-l) with $N_{r-1}=N_r=r+c$ for exactly j indices, $P_i(i=1, ..., j)$ being the lattice point (r, N_r) such that

Fig. 3a

 $N_{r-1} = N_r = r + c$ for the *i*th time. P_o be the point where the lattice path rises the line $N_r = r + c$ for the first time.

On applying the 'rotation procedure' to the path in Fig. 3a we observe that the transformed path $Q'P'_{j}...P'_{1}P'_{0}P'$ (see fig. 3b) is an

Fig. 3*b*

 $-(c-l)E_{2n+c-l-1}$, path having exactly j $T_{+}^{(-c)}$ points and hence 2j $T_{+}^{(-c)}$ points. Thus

$$N \left[\rho_n^{(c)} = j, N_n = n + c - l \right] = N \left[-(c-l) E_{2n+c-l-1, 1, (-c)}^{\cdot, 2j} \right]$$

Let $(t_1, -c)$ be the first and $(t_2, -c)$ the last $T^{(-c)}$ points (see Fig. 3b). Let us apply the β and γ -operations [4] to the segments $Q'P'_j$ and P'_oP' respectively. The δ -operation [4] on $P'_jP'_o$ yields the $H_{t_2-t_1}$, 4_{j-2} path. Attach these transformed segments in order. Finally let us insert both between θ_{t_1} and θ_{t_1+1} and after $\theta_{2n+c-l-1}$ a(+1). Thus we obtain a $H_{2n+c-l+1}$, 4j+c+l+1 path. By reversing this procedure we see that the transformation is 1:1. Therefore,

$$N \left[\begin{array}{ccc} \rho_n^{(c)} = j, & N_2 = n + c - l \end{array} \right] = N \left[H_{2n+c-l+1}, 4j + c + l + 1 \right]$$
 leading to (4.3) by [2].

Similarly by the analogous arguments it can easily be shown that for l=0, 1, 2, ...

$$N\left[\begin{array}{ccc} \rho_{n}^{(c)} = j, & N_{n} = n + c + l \end{array}\right] = N\left[\begin{array}{ccc} -(c + l) & E_{2n + c + l - 1, 1, (-c)}^{:, j +} \\ = N\left[\begin{array}{ccc} -(c + l) & E_{2n + c + l - 1, 1, (-c)}^{:, 2j} \end{array}\right] \\ = N\left[H_{2n + c + l + 1}, 4j + c + l + 3\right]$$

which leads to (4.4) by [2]. Theorem 3

$${\binom{2n+c-l-1}{n-1}} P \left\{ \nabla_{n}^{(c)} = j/N_{n} = n+c-l \right\}$$

$$= \sum_{m=0}^{\left[\frac{1}{2}(n-l-j)\right]} \frac{j+c+l+3m}{2n+c-l-j-m} {\binom{j+m}{m}}$$

$${\binom{2n+c-l-j-m}{n+c+m}}, l=1, 2, ..., (n+c) \qquad ...(4.5)$$

and

$$\begin{pmatrix}
2n+c+l-1 \\
n-1
\end{pmatrix} P \left\{ \nabla_{n}^{(c)} = j/N_{n} = n+c+l \right\}$$

$$= \sum_{m=0}^{\left[\frac{1}{2}(n-j-1)\right]} \frac{j+c+l+3m+2}{2n+c+l-j-m} \binom{j+m}{m}$$

$$\begin{pmatrix}
2n+c+l-j-m \\
n-2m-j-1
\end{pmatrix}, l=0, 1, 2, ...$$
...(4.6)

where [Z] denotes the greatest integer contained in Z.

To prove (4.5) let $OPPP_1...P_jLQ$ (see Fig. 4a) be the lattice path from (0, 0) to (n, n+c-l) with $(N_{r-1} \le r+c-1, N_r=r+c)$ for

Proof

exactly j indices, P_i (i=1, ..., j) being the point (r, N_r) such that $(N_{r-1} \le r+c-1, N_r=r+c)$ for the ith time. F and L be the points where the lattice path meets the line $N_r=r+c$ for the first and the last time respectively.

Fig. 4a

Fig. 4b

On applying 'the rotation procedure' we observe that (see Fig. 4b)

In Fig. 4b, $L'(t_1, -c)$ and $F'(t_2, -c)$ (where $t_2 > t_1$) be the points of the first and the last contact of the path with the line y = -c. The enumeration of paths on the right side of (4.7) includes the following four mutually exclusive cases: When

(i) L' is an
$$R_{f+}^{(-c)}(i.e. L'=P'_f)$$
 and F' is an $R_{f+}^{(-c)}(i.e. F'=P'_1)$

(ii) L' is an
$$R_{f+}^{(-c)}$$
 and F' is a $T_{-}^{(-c)}$

(iii) L' is a
$$T_+^{(-c)}$$
 and F' is an $R_{f_+}^{(-c)}$

(iv)
$$L'$$
 is a $T_{-}^{(-c)}$ and F' is a $T_{-}^{(-c)}$.

Let D_1 , D_2 , D_3 and D_4 denote respectively the required number of paths from Q' to P' with j $R_{j+}^{(-c)}$ in cases (i), (ii), (iii) and (iv). Then

$$N\left[\nabla_{n}^{(c)}=j, N_{n}=n+c-l\right]=\sum_{i=1}^{4}D_{i}$$
 ...(4.8)

We now consider our path $Q'L'P_j'...P_1'F'P'$ as divided into three segments viz., Q'L', L'F' and F'P'. For case (i) the corresponding path is shown in Fig. 4b. Here L'F' contains (j-2) $R_{j+}^{(-c)}$ and m $T_{+}^{(c)}$. Thus L'F' consisting of (2m+1) $S_{+}^{(-c)}$ [i.e. $(m+1)S_{+}^{(-c)}$ and m $S_{-}^{(-c)}$] includes $(j+m-1)W_{+}^{(c)}$ (of length 2p, say). Since each $S_{+}^{(-c)}$ consists of at least one $W_{+}^{(-c)}$, (m+1) $S_{+}^{(-c)}$ can be constructed out of (j+m-1) ordered $W_{+}^{(-c)}$ in $\binom{j+m-2}{m}$ ways (from the occupancy problem of [2]).

Now the β_i ϵ_i , δ_i and γ_i -operations [4] on Q'L', (j+m-1) $W_+^{(-c)}$, $m S_-^{(-c)}$ and F'P' yield respectively H_{t_1, t_i} , $H_{2p-j-m+1}$, $_{j+m-1}$, $H_{t_2-t_1-2p}$, $_{2m}$ and $H_{2n+c-l-1-t_2}$, $_{c+1}$. On joining these transformed segments in order we get finally the $H_{2n+c-l-m-j}$, 3m+j+l+c path where $0 \le m \le [\frac{1}{2}(n-l-j)]$. Thus

$$D_{1} = \sum_{m=0}^{\left[\frac{1}{2}(n-l-j)\right]} {j+m-2 \choose m} N[H_{2n+c-l-m-j}, 3m+j+l+c] \dots (4.9)$$

Similarly we can show that

$$D_{2} = D_{3} = \sum_{m=1}^{\left[\frac{1}{2}(h-l-j)\right]} {j+m-2 \choose m-1} N[H_{2n+c-l-m-j}, 3m+j+l+c] \dots (4.10)$$

$$D_{4} = \sum_{m=1}^{\left[\frac{1}{2}(n-l-j)\right]} {j+m-2 \choose m-2} N[H_{2n+c-l-m-j}, 3_{m+j+l+c}] \dots (4.11)$$

Hence (4.5) follows from (4.8) to (4.11) by using [2]. In a similar fashion the result (4.6) can also be proved.

Now we state below another result. Its proof follows immediately from the argument to that given in the proceeding theorem.

Theorem 4

$$\binom{j+m-1}{j}$$
, $\binom{2n+c-i-j-m+1}{n+c+m+1}$, $l=0, 1, ..., (n+c)$...(4.12)

and

$$\begin{pmatrix} 2n+c+l-1 \\ n-1 \end{pmatrix} P \left\{ \triangle_n^{*(c)} = j/N_n = n+c+l \right\}$$

$$= \sum_{m=1}^{\left[\frac{1}{2}(n-j+1)\right]} \frac{j+c+l+3m-1}{2n+c-l-j-m+1}$$

$$\binom{j+m-1}{j}$$
 $\binom{2n+c+l-j-m+1}{n+c+l+m}$, $l=1, 2, ...$...(4·13)

Finally we quote below other results concerning the distributions of the above statistics with superscript (-c), where c is a positive integer.

$${2n-c-l-1 \choose n-1} P \left\{ \Lambda_n^{(-c)} = j/N_n = n-c-l \right\}$$

$$= \frac{2j+c+l-2}{2n-c-l} {2n-c-l \choose n+j-1},$$

$$l = 0, 1, , (n-c)$$
 ...(4·14)

54 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

$${\binom{2n-c+l-1}{n-1}} P \left\{ \nabla_n^{*(-c)} = j/N_n = n-c+l \right\}$$

$$= \sum_{m=0}^{\left[\frac{1}{2}(n-c-j+1)\right]} \frac{j+c+l+3m-2}{2n-c+l-j-m} {\binom{j+m}{j}}$$

$${\binom{2n-c-j-m+l}{n+m+l-1}}, l=1, 2, \dots \dots (4.21)$$

These results can similarly be proved as Theorem 1, 2, 3 and 4.

5. Application of The Results in Deriving The Ballot Problems

Putting j=0 and n+c-l=k in (4.1) we get.

$$\binom{n+k-1}{n-1} P \left\{ \Lambda_n^{(c)} = 0/N_n = k \right\} = \frac{n-k+2c}{n+k} \binom{n+k}{n+c} \text{ for } k=0, 1, ..., n+c,$$

or

$$P\left\{N_r < r+c \text{ for } r=1, \dots, n/N_n = k\right\}$$

$$= \left(1 - \frac{k-c}{n+c}\right) \frac{\binom{n+k-1}{n+c-1}}{\binom{n+k-1}{n-1}}, \text{ for }$$

$$k=0, 1, ..., n+c$$

For c = 0, reduces to

$$P\{N_r < r \text{ for } r=1,...,n/N_n=k\}=1-\frac{k}{n} \text{ for } k=0, 1,...,n$$
 (5.1) thus verifying the Takacs' lemma ((7), p. 4; [5]) which is the generalization of the classical ballot theorem reformulated as below:

Suppose that in a ballot candidate A scores a votes and candidate B scores b votes and all the possible $\binom{a+b}{a}$ voting records are equally probable. Denote by α_r and β_r the number of votes registered for A and B respectively among the first r votes recorded. Let c and μ be non-negative integers. Define v_r , r=1, $2,\ldots,a+b$, as follows:

$$v_r = \begin{cases} o & \text{if the } r^{th} \text{ vote is cast for } A. \\ \mu + r & \text{if the } r^{th} \text{ vote is cast for } B. \end{cases}$$

Now $v_1, v_2, ..., v_{a+b}$ are interchangeable random variables that assume non-negative integer values and

$$v_1 + v_2 + \dots v_{a+b} = b(\mu + 1)$$
.

Set $N_r = v_1 + ... + v_r$, r = 1, 2, ..., a+b. Since $N_r = (\mu+1)\beta_r$ and $r = \alpha_r + \beta_r$, the inequality $\alpha_r > \mu\beta_r$ holds if and only if $N_r < r$.

Now on putting n=a+b and k=b $(\mu+1)$, (5.1) gives $P\{\alpha_r > \mu\beta_r \text{ for } r=1, \ldots, a+b/N_{a+b}=b(\mu+1)\} = \frac{a-\mu b}{a+b}$ for $a > \mu_b$, thus verifying the classical ballot theorem ((1), p. 2; [5]).

Similarly other results may be applied in deriving the ballot problems. The statistics

$$\bigwedge_{n}^{(c)}$$
, $\rho_{n}^{(c)}$, $\nabla_{n}^{(c)}$, and $\nabla_{n}^{*(c)}$

are equivalent to certain characteristics of the ballot problem as given below:

 $\bigwedge_{n}^{(a)}$: number of subscripts r=1, ..., a+b for which $\alpha_r = \mu \beta_r - c$.

 $\rho_n^{(c)}$: number of subscripts r=1, ..., a+b for which $\alpha_r = \mu \beta_r - c$ but $\alpha_{r-1} = \mu \beta_{r-1} - c - 1$.

 $\nabla_n^{(c)}$: number of subscripts r=1, ..., a+b for which $\alpha_r = \mu \beta_r - c$: but $\alpha_{r-1} \geqslant \mu \beta_{r-1} - c$.

 $\nabla_n^{*(c)}$: number of subscripts r=1, ..., a+b for which $\alpha_r < \mu \beta_r - c$ but $\alpha_{r-1} = \mu \beta_{r-1} - c - 1$.

SUMMARY

For non-negative integral valued interchangeable random variables, Takacs [5, 6] derived the distributions of statistics concerning their partial sums viz.,

$$\triangle_n$$
, \triangle_n^* , $\triangle_n^{(c)}$ and $\triangle_n^{(-c)}$.

In this paper, we derive the distributions of some other statstics viz.,

$$\bigwedge_{n}^{(c)}$$
, $\bigwedge_{n}^{(-c)}$, $\rho_{n}^{(c)}$, $\rho_{n}^{(-c)}$, $\nabla_{n}^{(c)}$, $\nabla_{n}^{*(c)}$ and $\nabla_{n}^{*(-c)}$ $(c>0)$

for geometrically distributed independent random variables through the technique of path methods as discussed by Csaki and Vincze [1] and Kanwar Sen [3, 4].