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1. INTRODUCTION

Takacs [5 6] considered the sequence v, 1;2, ..., vy of inter-
changeable random variables assuming non-negative mtegral values
and derived the distributions ofthe statistics

¢) —c)
DAny A¥, AV and AL

concerning the partial sums Ny=v,+...+v,, r=1,2, .. , n
In the present paper we shall derive, for ¢>0, the distributions
- of the following statistics viz.,

A;"’ : number of subscripts r=1, 2, ..., n for which N,=r+c¢

'

holds,
o!? : number of subscripts r=1, 2, ..., # for which N,—;=N,=r+-c
holds,

Vi . number of subscripts r=1, 2, ..., n for which N,_,<r+c— 1,
N,=r+c holds, '

7. pumber of subscripts r=1, 2, ..., n for which N,_,=r+c,

Ny>r+¢ holds,

under the condition that Nx=v,4-...+o.=k is fixed, where v,, v,, ...,
vn is a sequence of mutually independent and identically distributed
random variables having ‘Geometric-Distribution’, i.e ,

P {v,=i}=pq*, i=0, 1, 2, ... (1D
where p+a=1, 0<p<1. '

* This research was sponsored by the C,S.I.R., New Delhi under Grany
7/45 (739)/73-GAU. 1.
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Further, we define
- , - (= - - *(—0) ~
A:z ¢) , P:' ¢) , v;c)" and vn ¢ ‘
analogous to

AL, 91(;6) ” “ and \7*(0)
on replacing ¢-by —¢ ih the definition. In the sequel we shall employ
the technique of path methods as suggested by Csaki and Vincze [1]
~ and Kanwar Sen [3, 4]. Applications of the results have been mentjo-
ned in section 5.

2. A LATrICE PATH REPRESENTATION
Set N,=o,+...4v, for r=1, ..., n and N,,=0. )
Then ' ’

P {N,=j}= (”“] )p”q’ for j=0, 1, ... a2

Let us represent the sequence vy, v,, ..., 7x of non-negative integers by
a minimal lattice path in the following manner : (i) the path starts
from the origin; (if) for every j, v; répresents one horizontal unit
followed by wv; vertical units and the section of the path contributed
by v; starts where the section of the path contributed by 2;,_, ended
(see Fig. 1a). We call such a path, from (0 0) to (n, Ny»), a mmlmal
lattlce path with vartices (r NT) r=1, ’
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Fig. 1b.
We observe from (1°1) and (2°1) that the sequence v, ..., v of
geometric random variables possesses the property that all possible
lattice paths (IVy,...,N») from (0, 0) to (n, N,) are equally likely each

with probability P (Nn—k) / n+k ) = p"q~.

On rotating the lattice path (Fzg. la), from .(0, 0) to (n, Nn),
obtained by the above construction, through 225° about the origin
(so that the starting point becomes the end point and vice versa) and
referring the line N,=r as x-axis, we observe that it is equivalent to a
simple random walk path, as defined below in section 3, from
(0, n—Nxn) to (n+Nn—1, 1) (see Figs la and 1b). This procedure of
rotation will henceforth be referred to as the “rotation procedure”.

3. NOTATIONS

Let 6, 05 ..., 0. be independent random variables with
" P(9;=+1)=q, P(O;= —1)=p=1—gq, i.e. the sequence §; generates
a simple random walk. This can be represented in an (i, S) coordi-
nate system by a path with points (i, S), i=0, 1, ..., n where
S,=0, Si=0;+... + §; where the consecutive points are connected by
straight lines.

For ease in writing we introduce the following symbols :

R® point . a point (i, S;) where a path reaches the lme y=t
i.e. for which S;=1. _

R"jg ( RY ) " : an RW poiat (7, Sy) such that S;;=t+1(Siy
=t—1).

WW=t-wave : the segment of a path included between two

_consecutive R points is called a t-wave.

w? (W‘“ ) . a t-wave tvifh S>>t (S;<t) at the intervening
+ —_— ) 7

positions,
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T® point :apoint (i, S;) of the path for which (S.-=t,-
. Si-1. Sity=1*—1) holds. This will be called the
intersection point in the line y=1¢ (— c <1< cc);

TO =T, ‘

i ( T® ) : a point (i, S;) of the path for which §;_,=r+1,
Si=t, Sepy=t—1 (S =t—1; S;=t, Si1,=t+1).

S =t-section : the segment of a path included between two
consecutive ¥ points. An S may consist of
one or more W' of the same type.

() ) )
S:L”( S ) : a t-section with S;> ¢ (S;<¢) in between.
RS = treflection : a r-reflection occurs at an index Jj when S;=t,

S.’i~1- Si+1;(t+ 1)2 -Ol' (t —.])2.

R} ( R ) : apoint (j, S;) of the path for which S41="Sjt1
‘ =t+1=8;+1 (S; 1=Sj+;=t—~1=8,~1).
KEm’” )  :a path from (o, k) to (m, n); 05m, n=Fum, »
KE. . : an K%, , path having r R points.
KED® o : an K&, , path having p T points.
. . - (t) ’
CKED U, : an K%y, , path having g R, points.
. - . : ()
KE;” 1;‘,, '{t) tan KE,, . ., path having p T® apd q R,
-—points,
Similarly
ET - 5 E*> ¢ ot
K m’ n, (t) » K m (%) and K m, n, (1)
denote an K%, » path having exactly
/ YR, pT andq R
points respectively '
Hyy n : an Ey, , path reaching the height » for the first
time at the mth step. :

N [4] . : the number of all 4 paths, e.g.
) N [Em, n]':( " ):

3 (m=n)y




COMBINATORIAL RESULTS IN FLUCTUATON THEJORY 47

We shall use in the sequel the «, B, v, & and e-operations
involving translation or rotation or reflection of segments of paths
as discussed in detail by Kanwar Sen [4].

4. DisTRIBUTION OF A, o@, V¥, and V3 ror A posITIVE

INTEGER C

Theorem 1 .

(2n+c——1-—-1) P { A =j/Nn=n+c‘_,§ _

n—1
2j+c+! (2n+c—l) =01 o e @)

T2nte—I\ ntcti
and '
(Prteti=t) pf A —iiNentet |
_ 2jtcti42 2n+e+1\ , i,
= ntet (n—j—l ) =1,2, "(42)
Proof

To prove (4'1), let OPPoPiP;...P; O (see Fig. 2a4) be a lattice
path from 0 (0, 0) to Qn, ntc—1) with Nr=r+c¢ for exactly
j indices, Pi (i=1, ..., j) being the point (r, N;) where N,=r+-c for
the ith time and P=(1,0). P, be the point where the lattice path
meets the line N,=r+c for the first time. .

On applying the ‘rotation procedure’ we observe that (see Fig. 2b)

N[ a9 = Numne—t |=N] =D Eiiiovs s co ]

~

Now we establish below a 1:1 correspondence between

—(c=D E;:+c—l—1 ) (o paths and Honioqy 2j+c+1

paths. In the path Q'P';...P' PP’ (Fig. 2b) let us apply B-operation '
[4] to the segment Q'P';, 3 operation [4] to P’;P', and.y-operation [4]
to P’, P’ after reflecting the portion P’y P’ (if any) in the line y=-—c¢
and attach the transformed segments end-to-end in order. Finally
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let us now msert at the end (i. e. after 0211+a—l—1) a (—H) Thus we

obtain an Hynt,.g, 2j+c+1 path. By reversmg the procedure it may
be seen that this transformatlon isl:1. .

-

T\

S

a(n, »c-1)

P
(1,0)
' (Fig. 24)

] . . e t)
(@n+ ’ .
, : ) '5 : _
/\ P’
. 0 <.
et /\ /\/\ /

P~ PVPO ) : Y=-¢

(Fig. 2b) .

Hence

N[ > :c) =j, Np=ntc—I ]=N[H2n+c—b +c+i]

leading to (4.1} for I=0, 1, ..., (n ¢) by Feller [2p.89].
Similarly by the rotation procedure we have for /=1, 2,...

N[/\‘f,’~=j, N,=n+c+l ]=N [—(c+l)E§IM+z-1 1 m]

?N [H2n+o+l, 2i+c+l+2]
leadiﬁg to (4.2) by [2].
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\‘} Theorem 2
j (2”+,f:’1_1) P gpjf’ = j/N,.-=n+c—l§

=(4jjicil+_l)(2n+c+h 1)’ I=1,2, .ntc ..(4.3)

—~ It o—i+1 )\ n—2j—I
and (2}1—{,-10_4—11—1) P.{pif’ zj/NFnJrcHg
=<4j+c+l+3 )(Zn—l-c_{— I+1 ) 1=0,1,2, a4y
2n+te+1+1 n—2j—1
Proof _
' To prove (4.3) let OPPoPy...P; Q see Fig. 3a) be the lattice
- path from 0(0, 0) to Q(n, n + c—I) with N,_y=N,=r+c for exactly
7 indices, P;(i=1, ...,J) being the lattice point (r, N;) such that
Ny a(nn+c-2)
T :
C
> ¥
0 mn

*P
{s0)
Fig. 3a :

N,_y=N,=r+cforthe ith time. P, be the point where the lattice path
rises the line N,=r+ ¢ for the first time. _

On applying the ‘rotation procedure’ to the path in Fig. 3a we
observe that the transformed path Q'P';...P'1P'oP’ (see fig. 3b) is an

('sz-"’-" )

/ s 44
o) QSQL\ JAVAN |

(ty»-¢) : (l{’w -<)
. Fig. 3b
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—(¢—DEzn+o-1-1,, path having exactly j T::”’ points and hence

2j T points. Thus

N[P:Lc) =j, Na=nt c——I]:N[_(c.z, Eé;‘fc_,_l’ 1 (_c)]

Let (f;, —c) be the first and (t,,—c). the last T2 points (see Fig. 3b).
Let us apply the 8 and y-operations . [4] to the segments Q'P’; and
P’,P’ respectively. The 3-operation [4] on P';P’, yields the Hy;—y,
4;_, path. Attach these transformed segments in order. Finally let
us insert both between 6;, and 6y, and after bfonte—1-1 a(+1). Thus
we obtain a Hypteor4q, 4j+c+141 path. By reversing this procedure
we see that the transformation is 1: 1. Therefore,

NL P(;) =j, N2=I2+C‘I "=N [H2"+c_l+1, 4]+C+I+I)

leading to (4°3) by [2].
Similarly by the analogous arguments it can easily be shown
that for I=0, 1, 2, ...

N[ p(,f) =j, Nn=l1+c+l]=N[;(C+l) Eé;i:uq 1 (—c)]
=N[—(C+1) E;;fi.;.zq, 1 (—c)J

=N [Hp+eti41, 4j+c+143]
which leads to (4'4) by [2]. .

Theorem 3 :
(211:_01—1—1) P{ v:;c) =j/Nn=lz+c—l}
[ (1—1—)] o
_ Jte+143m (]-f—m)
- 2nt+c—I—j—m m
m=0
2ntc—Il—j—m® -
( ot ),l 1,2, ..., (14c) 45).
and :
( 2n Feri—l ) P {v @ =j/Nn=n+c+l}
[} (n—j=1)] .
- Jtet+i+3m42 (1+m )
- 2ntect+l—j—m\ m
m=0 o
(2”+c+’_j_m) =0, 1,2, ... L d6)
n—zm_j_l E 2 2 ]

where [Z] denotes the greatest integer contained in Z.

To prove (4.5) let OPPP,...P;LQ (see Fig. 4d) be the lattice
path from (0, 0) to (n, n-tc—1I) with (N,-;<r+c—1, N,=r+c) for

/
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Proof . ' S
-exactly j indices, P; (1—1 .., j) being the point (r, N,) such that
(Ne<r+c—1, N—r+c) fo" the ith time. Fand L be the points

where the lattice path meets the line N,=r--c for the first and the
last time respectively. ,

Ny ) - .Q(:OZT\“"CA-,"”.

/

A

Fzf
o ',.P : % 2 Y
(I,.o). n

Fig. 4a

| : (2n+c-Q-l,|)
. . _PI

et QM M )
¢ L AL )

AVENAS - e

L&, -c) (ts,-c)
Fig. 4b o
On applying ‘the Totation procedure’ we observe that (see Fig. 4b) -
(¢) __ — o _ s v Lo
N[V w =h Nu=nte l]_ N[' (C—I)E2n+c—jzt1 1 t-0) ] .

-2V [—enmns]

) =2N [‘_(C—I)E;r_:cj_)j_’l“;, f-:) ] ...(4.7)
' m
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In Fig. 4b, L' (t;,—c) and F’ (t,,—c) (where £,>1,) be the pointe of
the first and the last contact of the path with the line y=—¢. The

enumeration of paths on the right side of (4°7) includes the following
four mutually exclusrve cases : ‘When

(i) L' is an R‘ L G.e. L'=P';) and F’ isan R\ “(i.e. F'=P";)
@) L' isan RY,” and F'isa T
ase ' (—c) v ‘ (-¢}
G@i) L' is a T+ -and -F’ is an Rf+
Gv) L' isa T and F'isa T"°.

Let Dy, D,, D; and D, denote respectively the required number

of paths from Q' to P’ with j R‘ % in cases W), (u), (i) and ().

Then

N[v“’ , —n—{-c—l] zo 48

We now consider our path Q'L'P;...P, FP as d1v1ded into

three- segments viz., Q'L’, L'F’ and F'P’. For case (i) the corres-

ponding path is shown in Fig. 4. Here L'F’ contains (j—2)
RG? andm T, Thus L'F' consisting of 2m+1) S [ie.

(m+1SL? and m S includes (j+ m—])W"’" (of length 2p, say).
M + + 14 Y

Sit ce each Sy ) consists of at least one Wi, (m+1) ST can be
constructed out of (j+m—1) ordered W‘ 9 in (j'-Ft,nn.—Z) vrays
(from the occupancy problem of [2]). ' _ |
Now the B; ¢, § and y-operations f4'] on Q’L"., (j+m—1)
W, m ST and F'P’ yield respectively Hyy, 1, Hap-j-metis s+m—1s
Ath_“ —aps> am and Hongo-i—q-tg, c+1'- On joining these transr'ormedv
segments in order we get finally the
Honyootom—j, 3m-j+14c  path where 0<m<[l(n—l—])] Thus
[3(—I—j)] ‘
D,= z(j+r;n'—2) NlH kot m—i, 3m+J+1+d (

m=0

7
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Similarly we can show that
[3¢h-1=)]
Dy=Dy=
o om=1
Be-1-j)1 ' _
D= z (] +m—2) N[Hnto-t-m—i> 3mtitied] ...(4.11)

m—2
{ m=2

j+m—2

m—1 )N[H2n+c—1;.m._,,‘3m +j+l+C] (410)

Hence (4.5) follows from (4.8) to (4.11) by using [2]. In a similar
fashion the result (4.6) can also be proved.

Now we state below another result. Its proof follows imme-
diately from'the argument to that given-in the proceeding theorem.

Theorem 4

(1) 2 {vio- et |
’ [k (n=1=p) '
jt+e+I4+3m+1
2, Info—I—j+mFl
Com=1
(j-} m—l) (2n+c—i—j—m+l
. J "\ - ndcimtl

), I=O,Al,- very (n0) a(4.12)

and

n—1,

-

(2n+c+l—1

) P {A:‘°’=j/Nn_=n+c+1}
A [ (n—j+1)]

jbetiF3m—1
n4-c—Il—j—m+1

m==1. )

j+m—1 2n+c+1'—j,_l‘m+'1) l;=1 2 413

() (Maeriim ) 1=v2 @13

Finally we quote below other results concerning the distri-

butions of the above statistics with superscript (—¢), where ¢ is a
positive integer. - !

(2”‘0—’—1) P.{ AL = j/N,,:n—c—l%
- . n—1)

- 2jteti-2 (2n‘¥'c—l)
T 2n—c—I nt+j—-1)
1=0,1, ,(n—0) C(419)
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‘( 2n—c+1—1

n—1

) P { AL =j/N,.=_n—c+1}

_ 2tetl ‘(2,z—c+1)
T 2n—c+l n—c—j )’
I=1,2,0.. O .@&19)

. .<2n_—c—1—1) P { p},‘:“"=j/Nn=ﬁ—c—l}

n—1

_Aj+etl=3" (2"—‘c—l-+ 1 )

T m—c—I+1 ne2j—1 )
) l.=1, ..., (n—c). . .--(4'16)

(2n—;ii—1) P {,P;-c, =j/N,.'=n—c+1} :
_4jteti—1 (2n—c+1+1’)l
Do n—ekl+1 \on42i )
ST @)

(2"';?—';[—"1) P {'v:l_bc)-_—-j/N"‘:n_c_'l} .

[ Na—j+2)

L jte+i1+3m-—3 (j-}-m—l)‘

2n—c—I+1—j+m J

m=1

n—c—Il—j—m+1\ ,_ - ,
Gpash | R CE R 1)

(i) v amen-es}
' [} (n—c—j+1)] '

. jre+il4-3m—1
n—ctl—j—m+1

. om=1 —
(j—}{m-—l) (2n—c+1—j—h‘z+1)
J nt+m+l1 ?
1=0,1,... = = ..(419

(Zn—c—l—l) P {v:‘“°’=j/Nn=n—C—l§
n—1 '

i WNa—)1 , )
. Jte+1+3m '(]-}—m )
- 2n—c—Il—j—m j

m=10

2n—c—I—j——m)- _ - ' -
( ), 01, e -0 . (4°20)
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(et p o —pmen—et |
[} (r—c -j+1)] ‘
_ Jtetl+3m—2 (j+m)
- 2n—c+Il—j—m j

m=0

-(2” ‘c‘j‘m+’), I=1,2, ... (421

C n4mHl—1
These results can similarly be proved as Theorem 1, 2, 3 and 4.

5. AppPLICATION OF THE RESULTS IN DERIVING
THE BALLOT PROBLEMS

Putting j=0 and n+ c—I=k in (4'1) we get, _
n-t+k—1 © _ _ }_ n—k+2c n+k)
( n—1 ) P { A, =0/Ny=k I — (’H-C for
k=0, 1,..., n+c

3

or P {Nr<r+c for r=1, ..., n/Nn=k}

(o)

: k—e\\nte—1

=(1— n+c) Ak —1 , for
()

k=0,1, ...,n4e¢

For ¢ =0, reduces to

P{N, <r for r=1,...... ,n/Nn=k}=1———I;— for k=0, 1,..., n (5.1)

thus verifying the Takacs’ lemma ((7), p. 4; [5]) which is the generali-

zation of the classical ballot theorem reformulated as below:
Suppose that in a ballot candidate 4 scores @ votes and candi-

date B scores b votes and all the possible (a-(fz-b) voting records are

equally probable. Denote by «, and B, the number of votes registered
for 4 and B respectively among the first r votes recorded. Let cand @
be non-negative integers. Define v, r=1, 2,..., a--b, as follows :

” o if the r** vote is cast for 4.
T w4+ if the r™ vote is cast for B.

Now v,, vy,..., 0,+p are interchangeable randorm variables that assume
non-negative integer values and

nto+... Ua+b=b(f"+ 1),
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Set N,=uv,+...+ov, r=I1, 2,...,a+b. Since N,==(p.4-1)8, and
r—=a, | B,, the inequality «,>pp, holds if and only if N,<r.

Now on putting n=a+b and k= b (s +1), (5.1) gives
P{a,>pB, for =1, ..., a+b/Nypy=b(p+1)} =g:—:§ for a’>ys, thus
verifying the classical ballot theorem (D, p. 2; [5D.

‘ " Similarly other results may be applied in deriving the ballot
problems. The statistics
( ( ( #(
AD, 0@, v, and v,

n ?

are equivalent to certain characteristics of the ballot problem as
given below :

AL : pumber of subscripts r=1, ...,a+ b for which a,=uﬁ,»;c.
p:“) - number of subscripts r=1, ..., a+b for which a,=pl,—c
but ot -y=pBpy —c—1.
VAR . number of subscripts r=1, ..., a-b for which a,=pp,—c
: but ar_1>pﬁr_1— c. \
V:("’ | . number of subscripts r=1, ..., a+b for which < B —cC
but apqg=ufr.;—c—1.

SUMMARY

For non-negative integral valued interchangeable random vari-

ables, Takacs [5, 6] derived the distributions of statistics concerning

their partial sums viz.,

N, DE @ and A(n‘“’.

n? Sn
In this paper, we derive the distributions of some other statstics viz.,

(~ (¢) (— (
/\,ff) > /\n.c) s pn H pn o > vn‘:) E]

N

v';—c) , vi(c)- and v:(--c) (C>0)

for geometrically distributed independent random variables through
the technique of path methods as discussed by Csaki and Vincze
[1] and Kanwar Sen [3, 4].
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